Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456190

Résumé

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) issued a significant and urgent threat to global health. The exact animal origin of SARS-CoV-2 remains obscure and understanding its host range is vital for preventing interspecies transmission. Previously, we have assessed the target cell profiles of SARS-CoV-2 in pets, livestock, poultry and wild animals. Herein, we expand this investigation to a wider range of animal species and viruses to provide a comprehensive source for large-scale screening of potential virus hosts. Single cell atlas for several mammalian species (alpaca, hamster, hedgehog, chinchilla etc.), as well as comparative atlas for lung, brain and peripheral blood mononuclear cells (PBMC) for various lineages of animals were constructed, from which we systemically analyzed the virus entry factors for 113 viruses over 20 species from mammalians, birds, reptiles, amphibians and invertebrates. Conserved cellular connectomes and regulomes were also identified, revealing the fundamental cell-cell and gene-gene cross-talks between these species. Overall, our study could help identify the potential host range and tissue tropism of SARS-CoV-2 and a diverse set of viruses and reveal the host-virus co-evolution footprints.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère
2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.06.13.149690

Résumé

A few animals have been suspected to be intermediate hosts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scale single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is missing. Here, we constructed the single-cell atlas for 11 representative species in pets, livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cells in cat was found considerably higher than other species we investigated and SARS-CoV-2 target cells were detected in multiple cell types of domestic pig, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming intermediate hosts in future coronavirus outbreak. Furthermore, we screened the expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of virus target cells. Taken together, our work provides a novel and fundamental strategy to screen virus target cells and susceptible species, based on single-cell transcriptomes we generated for domesticated animals and wildlife, which could function as a valuable resource for controlling current pandemics and serve as an early warning system for coping with future infectious disease threats.


Sujets)
COVID-19 , Maladies transmissibles
SÉLECTION CITATIONS
Détails de la recherche